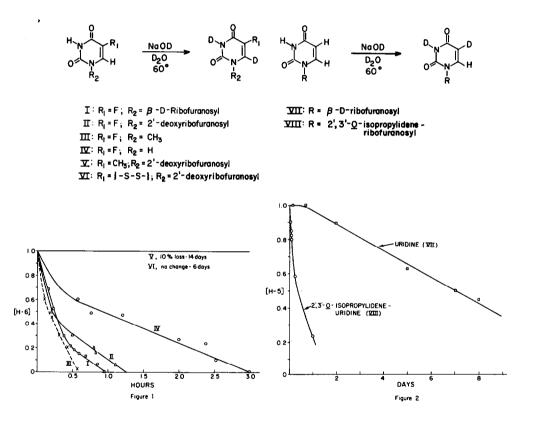
REACTIONS OF 5-FLUOROURACIL DERIVATIVES WITH SODIUM DEUTEROXIDE

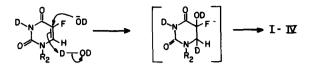
R. J. Cushley and S. R. Lipsky

Section of Physical Sciences, Yale University School of Medicine, New Haven, Connecticut 06510

J. J. Fox *


Division of Biological Chemistry, Sloan-Kettering Institute for Cancer Research, Sloan-Kettering Division of Cornell University Medical College, New York 10021

(Received in USA 5 August 1968; received in UK for publication 19 September 1968)


Fox, Miller and Cushley ² reported that treatment of 1- β -<u>D</u>-arabinofuranosyl-5-fluorouracil (Ara-5-FU) with 0.1<u>N</u> NaOH at 60-70⁰ gave an open-chain ureido derivative formed via a 1,4addition of the 2'-OH across the α , β -unsaturated ketone of the aglycon followed by cleavage of the 3,4-C-N bond. It was stated ² that 1- β -<u>D</u>-ribofuranosyl-5-FU (I) and its 2'-deoxy analog (II) did not undergo this reaction "as evidenced by the constancy of their ultraviolet spectra."

Treatment of I, II, 1-methyl-5-FU (III) and 5-FU (IV) with 0.5N NaOD in D_20 (equal to 2 equiv. of alkali) at 60° showed a rapid exchange of H-6 by deuterium. Relative rates of this reaction were determined by proton NMR spectroscopy ³ by the disappearance of the H-6 signal (Fig. 1). Intensities of the C-6 protons were compared with other protons in the molecule which were not replaced, and integrals are the average of 3-4 runs about 1 minute apart. In the case of IV, the reference signal was a known amount of added sodium acetate. NMR parameters have been recorded earlier for these systems ⁴ and no other change in the NMR spectrum was apparent during the course of the reaction. The products were isolated and gave ultraviolet and mass spectral ⁵ analyses consistent with their assigned structures.

In contrast, uridine (VII) and 2',3'-<u>O</u>-isopropylideneuridine (VIII) under identical conditions show slow exchange of H-5. The reaction was followed by measurement of the doubletsinglet intensities of the C-6 proton of VII and VIII due to $H \rightarrow D$ substitution at C-5. Compound VIII has a half-life (t 1/2) = 0.5 days; VII a (t 1/2) = 7 days (Fig. 2). ⁶ After 5 days, a new singlet slowly appeared in the spectrum of uridine at $\delta = 8.44$ ⁷ but after 8 days this new peak represented only $\sim 28\%$ of the H-6 intensity. This same singlet also appeared in the spectrum of VIII after essentially complete H-5 exchange had occurred. Preliminary experiments using 0.3N NaOD gave (t 1/2) \sim 135 hrs for uridine and \sim 5 hrs for VIII with no evidence of the new singlet at $\delta = 8.44$. The most likely mechanism for H-5 replacement in uridines is by 1,4-addition across the α,β -unsaturated ketone system ² involving attack by OD⁻⁸ or the 5'-hydroxy anion at C-6. ⁹ Subsequent ketonization H H $_{[DO-C-C-C-OR \longrightarrow -C-CHD-C-OR]}$ followed by eventual elimination of HOR would yield exclusively 5-deuterated starting material. Anchimeric assistance due to the presence of the isopropylidene group (see Fig. 2) is to be expected on conformational grounds ^{9,10}, if the 5'-hydroxy anion is the nucleophile. This is consistent with the fact that 1-methyluracil in 50% 0.3<u>N</u> NaOD/D₂0-DMSO-d₆ shows less than 10% H-5 exchange even after 7 days.

On the other hand, for the 5-fluorouracils (I-IV) a most probable mechanism for H-6 exchange involves an initial attack by OD⁻ on C-5 followed by abstraction of a deuteron from solvent. Upon removal of DOH from the 5,6-dihydro intermediate, the 6-D products would form. This "C-5 attack" mechanism does not rule out the concomitant occurrence of a normal 1,4addition (attack on C-6). Indeed, electronegative substituents at C-5 should enchance both

pathways of nucleophilic addition. However, only attack on C-5 could lead to 6-deuterated products. In support of the proposed "C-5 attack" mechanism, thymidine (V) and the 5-disulfide (VI) ¹¹ with electropositive groups on C-5 undergo attack by alkali extremely slowly (Fig. 1). A systematic study of other 5-halouridines is precluded because these derivatives give new products when treated with base. 9

Another possible pathway for H-6 exchange in compounds I-IV is direct proton abstraction at C-6. Beak and Bonham ¹² have proposed such a mechanism for D/H exchange in 3,5-disubstituted-N-methyl-4-pyridones. The carbanion resulting from base catafyzed proton abstraction at the 2and 6- positions was stabilized by the adjacent tertiary nitrogen. ¹² This mechanism can be excluded in the present case because 5-fluorouracil (IV) - in which stabilization by the 1-N is precluded - does undergo H-6 exchange. In addition, even under neutral conditions (D₂0, 95°) 1-methyl-5-FU (III) also undergoes H-6 exchange (t 1/2 = 3 days). Carbanion generation would surely be unlikely under these conditions.

It should be noted that the rate of 6-H exchange for IV is ~ 4 times slower than with I-III (Fig. 1). This may be due to the fact that in 0.5<u>N</u> NaOD, IV exists <u>predominantly</u> as the di-anion whereas I-III are in the monoanionic form. It is suggested that, under these alkaline conditions, the monoanionic form is the reactive species.

In conclusion, reaction of 5-fluorouracil derivatives with NaOD-D₂O leads readily to 6deutero analogs by way of an initial nucleophilic attack of OD⁻ on C-5. The reaction is basecatalyzed since 1-methyl-5-FU shows no H-6 exchange by deuterium in <u>N</u> DC1 (13 days at 65°). This method should be of value for the preparation of selectively-labelled derivatives of these biologically-important compounds.

References

- * This paper is considered as "Nucleosides LIII. Transformation of Pyrimidine Nucleosides in Alkaline Media.II."
- Supported in part by funds from the National Institutes of Health, U.S. Public Health Service, Grant Nos. FR-00356-02 (S.R.L.) and CA 08748 (Sloan-Kettering Institute).
- J. J. Fox, N. C. Miller and R. J. Cushley, <u>Tetrahedron Letters</u>, 4927 (1967).
- 3. Determined using a Bruker HFX-3 spectrometer operating at 90 MHz and fitted with a variable temperature probe containing a calibrated thermocouple (Bruker B-ST-100/700 digital accessory). The temperature was constant to $\pm 1^{\circ}$.
- 4. R. J. Cushley, I. Wempen and J. J. Fox, J. Am. Chem. Soc., 90, 709 (1968).
- 5. R. J. Cushley, W. J. McMurray and S. R. Lipsky; to be published.
- Tritium and deuterium exchange at C-5 of uridylic acid under photolytic conditions has been reported: R. W. Chambers, J. <u>Am. Chem. Soc.</u>, <u>90</u>, 2192 (1968).
- 7. It is suggested that this resonance signal is due to the vinylic proton of an α,βunsaturated-5-deuterated-ureido acid [D₂N-G-N-CH-CD-COO⁻]. Such a by-product may arise by

slower ring-cleavage at the 3,4-positions of the 5,6-dihydro intermediate formed (vide infra) by attack of the 5'-hydroxy anion or OD on C-6 followed by elimination of HOD or HOR.

- 8. S. R. Heller, personal communication. We are indebted to Dr. Heller for making the results of his work available to us prior to publication.
- 9. B. A. Otter, E. A. Falco and J. J. Fox, Tetrahedron Letters, 2967 (1968).
- 10. E. J. Reist, A. Benitez and L. Goodman, J. Org. Chem., 29, 554 (1964).
- 11. The authors are grateful to Drs. Thomas J. Bardos and Michael P. Kotick for this compound.

12. P. Beak and J. Bonham, J. Am. Chem. Soc., 87, 3365 (1965).